FLE COPY

ESD-TR-75-58 xrn: NG . 84/7i
ne.] o ;_3_‘0‘,3.

MIXED-INITIATIVE TUTORIAL SYSTEM TO AID
USERS OF THE ON-LINE SYSTEM (NLS)

Mario C. GCrignetti

Laura Gould

Catherine L, Hausmann

Alan G. Bell

Gregory Harris

Joseph Passafiume

Bolt, Beranek and Newman, Inc.
50 Moulton Street

Cambridge, MA

30 November 1974

Approved for public release;
distribution unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION
L. G. HANSCOM AIR FORCE BASE, BEDFORD, MA 0i73I

LEGAL NOTICE

When U.S. Gavernment drawings, specificatians ar other data are used far any
purpose ather than a definitely related gavernment procurement aperatian, the
gavernment thereby incurs na responsibility nar any abligation whatsaever; and
the fact that the gavernment may have farmulated, furnished, ar in any way sup-
plied the said drawings, specifications, ar other data is not ta be regarded by
implicatian ar atherwise as in any manner licensing the halder ar any other persan
or conveying any rights or permission to manufacture, use, or sell any patented
inventian that may in any way be related thereto.

OTHER NOTICES

Da nat return this copy. Retain ar destroy.

"This technical report has been reviewed and is approved for
publication.”

Syl K. Magor Sylira R M“&“"

SYLVIA R. MAYER/GS-14 SYLVIA R. MAYER/GS-14
Project Scientist Task Scientist

FOR THE COMMANDER

Cll s

ROBERT W. O'KEFFE/ Colonel, USAF
Director, Infofmgtion Systems
Technology Applitations Office

Deputy for Command & Management Systems

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dequnlered)

READ INSTRUC
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-75-58
4. TITLE (and Subtitle) 5. TYPE DF REPORT & PERIOD COVERED
MIXED-INITIATIVE TUTORIAL SYSTEM TO AID
USERS OF THE ON-LINE SYSTEM (NLS)
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Mario C. Grignetti Alan G. Bell
Laura Gould Gregory Harris F19628-74-C-0088
Catherine L. Hausmann Joseph Passafiume
9. PERFDRMING DRGANIZATION NAME AND ADDRESS 10. isEiR&AwOERLKEUEINTT.NPROJEST' TASK
Bolt, Beranek, and Newman, Inc. Program Element - 8965k
50 Moulton Street Project No. 2801
Cambridge, MA Task 04,03
11. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command and Mangement Systems 30 November 1974
Hanscom AFB, MA 0173I " "“""fgl"‘ PR
14, MDNITDRING AGENCY NAME & ADDRESS(if different from Controliing Office) 15. SECURITY CL ASS. (of this report)
N/A UNCLASSIFIED
1Se, ?CESELDASEIEFICATIDN/DOWNGRADING
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTIDN STATEMENT (of the ebstract entered in Block 20, if dlfferent from Report)

18. SUPPLEMENTARY NDTES

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)

Artificial Intelligence, Computer Assisted Instruction, Natural
Language Processine, Semantic Grammar, Semantic Network,
Tutorial Supcrvision, On-Line Assistance, Question Answering

20. ABSTRACT (Continue on reverse aide if necessary and identily by biock number)

NLS-SCHOLAR is a prototype system that uses Artificial Intelli-
gence techniques to teach computer-naive people how to use a
powerful and complex editor. It represents a new kind of Computer
Assisted Instruction (CAI) system that integrates systematic
teaching with actual practlce, i.e., one which can keep the user
under tutorial supervision while allowing him to try out what he
learns on the system he is learning about. (over)

DD ,"S™™, 1473 EoiTion DF 1 NOV 65 IS OBSOLETE e
D iianm Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) .

20. NLS-SCLIOLAR can also be used as an on-line help system outside
the tutorial environment, in the course of a user's actual
work. This capability of combining on-line assistance with
training is an extension of the traditional notion of CAIl.

The techniques uscd in NL6O-SCLOLAR are gencral and can be

applied to the tcaching of a wide variety of computer related
activities.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

Page

PREFACE..............o...................................... 3

SECTION I - INTRODUCTION

What is NLS-SCHOLAR

Why an NLS-SCHOLAR system
Demonstrating NLS-SCHOLAR capabilities
Annotated protocol

How does it work

® 6 0 0 0 0 0000 OO O 0O OO O e eSO OO e e e PO OOE TPCE 5

SECTION II == NLS-SCHOLAR AS A TUTOR'.O...0.....000000000.... 26

Introduction

Teaching NLS fundamentals: The Primer
Endowing NLS-SCHOLAR with "awareness"
The LISP-NLS system

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMS:eccccscscescss 39

Questions and Answers: an Overview
Student/QA
The Parser
Parsing in Detail
Retrieval
Output
Tutor/QA
Tutor/QA System's Organization
The Form-Completer
The Answer Comparer
Future Considerations

SECTION IV = TASK EVALUATION::cceceecesssssccesccccccsccssss 00

SECTIONV-SYSTEM ORGANIZATION............................- 64

Overall Organization
Error Analysis
How the System Works
Student Aids
Debugging Aids

SECTION VI = CONCLUSIONSt teevenorrsssosesensssssssssons 73
References .o swsvascsn s oessas R O o R [R R A O e T T E 75
Appendix - Complete Scenario (Primer) e A 77

PREFACE

The United States Air Force is relying more and more on
computer based systems for many of its management,
logistics, resource allocation, planning, and command and
control functions. Many of these computer based systems are
extremely powerful, but part of their 1large potential

usefulness remains untapped because of their complexity.

A case in point is the oN Line System (NLS), a powerful
tool for planning and communication developed by the
Augmentation Research Center of the Stanford Research
Institute. NLS 1is a computer based system for writing,
editing, publishing, and disseminating information of all
kinds. Many Governmental agencies including several Air
Force facilities, access it through the ARPA computer
network. NLS is currently being evaluated by the Air Force
as a varadigm for the use of a computer based Management
Information System. In particular, one group at the Rome
Air Development Center is using NLS experimentally as part

of that evaluation.

Although NLS is a complex system providing many options
to 1its users, those who have become proficient with it find
it very easy and powerful to use. However, gaining that
proficiency 1is wusually very difficult and time consuming,
and there is a real need for computer aids to help people

with the learning process.

Recodgnizing the generality of this problem, the Air
Force has established as one of its Technical Needs the
development of computer based training and decision aids to
help peoprle learn how to wuse these systems. In the
following report we describe the work done at Bolt Beranek
and Newman on a system, called NLS-SCHOLAR, designed to meet
that Technical Need: ESD-TN-Human Performance Aiding in

Command, Control and Management Data Systems.

SECTION I - INTRODUCTION

What is NLS-SCHOLAR

NLS-SCHOLAR is a quasi-operational CAI system that uses
Artificial Intelligence technigues to help people learn how
to use the powerful structural editor of NLS. NLS, the oN
Line System [1] developed by Douglas Engelbart and his
co-workers at the Augmentation Research Center of the
Stanford Research Institute, 1is a sophisticated modular
system which 1is being increasingly used as an aid in
writing, re-organizing, indexing, publishing, and
disseminating information of all kinds. It is a very large
system made up of many subsystems, and NLS-SCHOLAR deals
with EDIT, its most important and most frequently wused

subsystem.

SCHOLAR, conceived and first developed by the late
Jaime R. Carbonell, is an interactive mixed-initiative CAI
system that deals with the geography of South America. It
is cavable of answering freely interspersed questions posed
by a student in the course of a tutorial session, and it
uses teaching strategies similar to those of good human

tutors [2,3,4].

In trying to apply SCHOLAR to other domains of
knowledge, such as computer networks |[5] and structural

editors, we have uncovered new problems that require

radically different approaches. Therefore, NLS-SCHOLAR,
although preserving the flavor and interaction
characteristics of SCHOLAR, 1is an almost entirely new
system, its underlying philosophy and approach owing much to

Brown s SOPHIE system [6,7].

Why an NLS-SCHOLAR system

NLS is a powerful system for preparing and distributing
documents that offers many rewards to people who have
learned how to use it well. However, its complexity and the
multiplicity of 1its options make learning NLS difficult,
time consuming, and at times discouraging for people who are
not habitual computer users. With the increased
availability to NLS now afforded by the ARPA network and,
above all, with NLS playing a fundamental role in the NSW
project [8] there is a real need for on line aids to help

non-programmers both to learn and to use NLS.

NLS-SCHOLAR is designed so that it may perform either
as an on-line helper and question answerer, or as a tutor.
When used as a tutor, NLS-SCHOLAR behaves in a verv friendly
way: 1in the course of a lesson, students can ask questions,
proceed at their own pace, make mistakes safely, ask for

help, and give up and be rescued by the system.

In tutorial mode learning is made easy and comfortable

by relying heavily on ostensive teaching. New information

is presented to the student by means of an expository part,
presenting examples and showing students how to do things.
The tutor lets students edit text by themselves and helps
them correct their mistakes; 1t answers guestions or
performs commands posed by students in a comfortable subset
of English; it asks questions and evaluates students’
answers; and it presents tasks for students to perform which

are then evaluated and commented upon.

As with most CAI systems, learning takes place in
complete privacy; students are left alone in a tete-a-tete
with the system with nobody witnessing their mistakes,
ignorance, or lack of sophistication in the use of computer
systems. This relaxed (and relaxing) situation helps the
learning process enormously. But unlike most CAI systems,
NLS-SCHOLAR is designed so that it can also be used as an
on-line help system, so that users can ask guestions arising
in their actual work with NLS, and expect NLS-SCHOLAR to be
aware of what they are doing and answer accordingly. This
is especially useful for sporadic users, or for people who
have not used NLS for a long time and have forgotten some of

its conventions.

NLS-SCHOLAR is designed to be a stand-alone tutorial
and help system. A student’s prior knowledge requirements
are simply to know how to 1log 1in, and follow the basic

instructions contained in a 2-page handout. The information

contained in these instructions is 1itself a part of the
system’s domain of knowledge. For example, the student is
told how to erase a character that he has typed, but if he

forgets how to do it he can ask NLS-SCHOLAR.

Demonstrating NLS-SCHOLAR's capabilities

The flavor of NLS-SCHOLAR is best conveyed with the
help of a demonstration protocol which was actually obtained
on-line using the latest version of the system. First, a

few helpful comments.

The demonstration of interactive capabilities we want
to perform cannot be done "in vacuo"; questions asked by
students or by the system, as well as tasks voroposed and
evaluated arise more naturally and make more sense in the
course of a lesson. When used as a tutor, the system 1is
driven by a fixed Agenda which presents to the student
carefully sequenced morsels of NLS knowledge and know-how.
Since this 1is a demonstration protocol, our "student"* is
very obliging and does the appropriate things at the right
times to make explicit specific characteristics of the

system.

NLS-SCHOLAR uses two bodies of text as 1its working
examples, one a breakfast menu and the other a dinner menu.

In the course of a lesson, students learn how to change the

*Actually one of the authors.

contents (and appearance) of these menus by performing
editing operations. Menus were chosen as examples because
of their direct appeal and general 1intelligibility, their
natural hierarchical structure, and the shortness of their

entries which makes them very easy to work with.

In the interest of brevity*, the protocol starts at a
point well along in the student s learning of NLS -- he has
been told about NLS files, how to load them, print them,
delete and 1insert statements in them, etc. He is about to
be taught how to use the Substitute command to effect a

change in the breakfast menu (see Figure 1).

Readers familiar with NLS may fail to recognize it as
the system depicted 1in the protocol. This 1is because
NLS-SCHOLAR teaches the use of a newly emerging version of

NLS, which is not yet generally available.

*For a complete demonstration protocol, see the Appendix.

FIGURL 1 - THE BREAKFAST FILL

1 JUICE

1A ORANGE

1B GRAPLFRUIT
2 CERLAL

2A OATMLAL

ZA1 WITH RAISINS

2B CREAM OF WHLAT

2C CORN FLAKLS

3 LGGS

3A SCRAMBLED

38 ERIED
3B1 SUNNY-SIDL-UP
3B2 OVLR-LASY

S5C BOILLED

4 BLVLRAGL
4A 1I0OT CHOCOLATEL
48 TLA

481 WITH LLEMON
4B2 WITH SUGAR AND CRLEAM
4C COFFLE

10

FIGURE 2 - THE PROTOCOL

SUBSTITUTE WORD IN STATEMENT

Before we end this lesson, I°d like to show you how to change the
content of statements which have already been inserted in your file.

You ‘ve learned how to correct errors by deleting an entire statement
and inserting a new one in its place. The Substitute command may be
used to change just a word or even a single character at a time. For
example, here’s how you can change a word in statement 2A1 so that it
reads WITH DATES instead of WITH RAISINS.

EDIT C: (Su)bstitute C: (W Jord in ©C: (S)tatement at H&K: (241
YECERS) ¢

<New WORD> T: (DATES)(<CR>);

<014 WORD> T: (RAISINS)(LCR>);

Finished? Y/N: (Y) OK: (<KCR>);

Substitutions made: 1

EDIT €2 (Do)ne Q@K% (SCR>);

NLS-SCHOLAR performs a command for the student much as a

human tutor would by leaning over the student and typing

the command on the student's terminal. Parentheses enclose
what the "tutor' actually "types' separating it from the
echoes and responses printed by NLS.

<CR> 18 just a symbol to denote that the "tutor'" depressed the
RETURN key. The semicolon is NLS's echo to a <CR>.

You can see that I've specified that I want to substitute one word in
statement 2A1 for another; the new word DATES is to be

substituted for the old word RAISINS.

(There is no restriction that the items substituted for

one another be of the same length.)

To do this I typed only “Su W S 2A1 <CR> " to produce the first line;
typed °‘DATES <CR>" and “RAISINS <CR> " to produce the second and third.
The remaining characters are all printed by NLS.

NLS asks ‘Finished?’ since more than one substitution can be made at a
time. If I had typed ‘N’ for no instead of ‘Y’ for yes, it would have
prompted for another <New WORD> and <0ld WORD> pair.

’ ’

After I typed 'Y NLS asks for further confirmation with OK:
to which I responded with a <CR>.

When the command has been executed, NLS tells how many substitutions
have been made. If there had been two instances of RAISINS in
statement 2A1, both would have been changed to read DATES.

Statement 2A1 is now the current statement. Please print it.

11

I

Student typing ts underlined.

TASK 41 The student confuses the \ command, which
prints the current statement, with the / command
EDIT C: £ that shows the current position of the control
==>WITH DAT marker. Realizing his mistake, he fumbles with
EDIT C: 1 the other one-character commands he can
2A OATMEAL remember. First he tries % which prints the

previous 8tatement (24), and makes
it become the current statement.

EDIT C: _% Next the student depresses the LINE FEED
key which echoes as %, giving him the next
2A1 WITH DATES statement (241), making it current.

EDIT C: Done OK: _;
You printed too many statements. The task 18 evaluated.

This is what I wanted you to print:
2A1 WITH DATES

Please redo just the printing
part of this task. Your file is unchanged.

NLS-SCHOLAR ts really determined to get-the student to review
how to print the current statement.

continuation of TASK 41

EDIT C: *What command prints the current statement?¥

THE USER PRINTS THE CURRENT STATEMENT USING THE
\ COMMAND.

Failing to remember the appropriate one-character command,

the student gives up and asks for help.

Questions can be asked anytime it is the student's turn to type.
NLS-SCHOLAR answers this question by retrieving information from
its own internal, descriptive data base.

continuation of TASK 41
EDIT C:)\

oM WITH DATES

EDIT C: Done OK:_;

QUESTIONS?

= The student chooses to ask no questions at this time.

12

Try the Substitute command yourself by substituting the word
OAT for CORN in the statement containing "CORN FLAKES".

TASK 42

EDIT C: *What statement contains "CORN"?2*

THE STATEMENT CONTAINING "CORN" IS:
2C CORN FLAKES

The student wants to know what the correct statement number is
for him to type. The system obtains the answer by actually
looking into the student's work space -- the answer is not stored
(it cannot be!) in the internal data base.
The system interprets correctly most of the common
paraphrases of this type of question, e.g.

"What is the statement containing...'”

"What statement contains..."

"Where is...", etc.

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: CORN;
<0ld WORD> T: QAT;

Finished? Y/N: Y O0K:

Substitutions made: 0

EDIT C: Done OK: ;

oo

The student switches around the new and the old words,
so no change is made.

You should have altered the file NLS-SCHOLAR shows the student
so that this part of it what the result of this command
2B CREAM OF WHEAT should have been i1f he had
2C CORN FLAKES performed the task correctly
3 L s s as opposed to the result which

he obtained. With this
information, the student
would look like this: can "debug" his performance
2B CREAM OF WHEAT of tne task.
2C OAT FLAKES
3

But you did not alter the file.

Please try to repair your
mistake. The file is as you left it.

13

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
{New WORD> T: QAT,;

<01d WORD> T: CORN;
Finished? Y/N: X OK:
Substitutions made: 1
EDIT C: Done OK:_;

P |

TASK 43
EDLIT €2 Print OK:/ACd NL5 allows the student to type as
2C OAT FLAKES little or as much of each
3 EGGS command as he likes, providing
3A SCRAMBLED 1t 18 unambiguously denoted.
3B FRIED Here he chooses to type all of it
3B1 SUNNY-SIDE-UP since the command 18 so short.
3B2 OVER-EASY
3C BOILED
4 BEVERAGE
4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK:_;

You printed too many statements.
This is what I wanted you to print:
2C OAT FLAKES

Please try to print what I
wanted. The file is as you left it.

continuation of TASK 43

EDIT C: \

2C OAT FLAKES
EDIEE G Dener OKE 3

Good. The noun ‘WORD ® refers to the fact that whole words are
involved, not just parts of words; but it does not imply that a single
word only may be provided as either the <New WORD> or the the <01ld
WORD>. Use the Substitute command to change statement 2A1 again, this
time to read WITH BROWN SUGAR AND CREAM instead of WITH DATES and
print your result.

14

TASK 44

EDIT C: Substitute C: Word in C: Statement at A: 24A1;
<{New WORD> T: WITH BROWN SUGAR AND CREAM;

<0ld WORD> T: DATES;

Finished? Y/N: ¥ OK:_;

Substitutions made: 1

EDIT C: Done OK:_;

I wanted you to change
this part of your file:
2A OATMEAL
2A1 WITH DATES
2B

into this:
2A OATMEAL
2A1 WITH BROWN SUGAR AND CREAM
2B

But you changed this part of it:
2A OATMEAL
2A1 WITH DATES
2B

into this:
2A OATMEAL
2A1 WITH WITH BROWN SUGAR AND CREAM
2B

I have restored the file as it was
at the beginning of this task. Please start over.
TASK 44

EDIT C: *How does one do this?*% The student is lost
and asks for help.

, ,

THE USER TYPES °“SUBSTITUTE “, FOLLOWED BY “WORD ~,

,

"STATEMENT °, “2A1°, <CR>, °'BROWN SUGAR AND CREAM’,
<CR>,
‘DATES”, <CR>, ‘YY", <CR>, “\", A <SPACE>, 'DONE ~,

AND <CR>.

NLS-SCHOLAR can show him what to do, as well as...

continuation of TASK 44

EDIT C: *¥Please do it for me#*

...actually do it for him!

EDIT C: (Substitute) C: (Word) in C: (Statement) at A: (2A1
W< BRI §
<{New WORD> T: (BROWN SUGAR AND CREEM) (<CR>);
<01d WORD> T: (DATES)(<KCR>);
Finished? Y/N: (Y) OK & CKERD) 5
Substitutions made: 1
EDIT €2 W\)
2A1 WITH BROWN SUGAR AND CREAM
BDILT C: (BDome ;) OFK: (<CR>)3

QUESTIONS?

* *

Please print the file starting with statement 1 so you can see the
effect of the changes we have made.

TASK 46

EDIT C: *Tell me how to print the file.¥*

THE USER PRINTS AN NLS FILE FROM THE CURRENT STATEMENT
TO THE END OF AN NLS FILE USING THE PRINT COMMAND,
PROCEDURE: HE TYPES “PRINT °~ FOLLOWED BY <CR>.

An alternative to asking how to do a specifiec task
(in this case TASK 46) is for the student to find his own
way by asking more general kinds of questions.

continuation of TASK 46

EDIT C: *what does current statement mean?#%

THE CURRENT STATEMENT IS THE STATEMENT AT
WHICH THE CM IS CURRENTLY POINTING.

16

continuation of TASK 46

EDIT C: *Where does the CM point to now?#¥

THE CURRENT POSITION OF THE CM IS:
:3B + 1

continuation of TASK 46

EDIT C: *How do I move the control marker?¥

THE USER MOVES THE CM USING A CM MOVING COMMAND.

continuation of TASK 46

EDIT C: *¥What are the CM movineg commands?#*

EXAMPLES OF A CM MOVING COMMAND ARE THE JUMP COMMAND,
THE < COMMAND, AND THE > COMMAND.

continuation of TASK 46

EDIT C: ¥*How do I jump to statement 12%

THE USER MOVES THE CM USING THE JUMP COMMAND,

PROCEDURE: HE TYPES “JUMP “, FOLLOWED BY “1°, AND
<CR> .

The student has asked many questions to re-familiarize

himself with the information necessary to perform
TASK 46. He now feels able to proceed to do it.

157

continuation of TASK 46

EDIT C: Jump to #z 15
EDIT €3 Priot OK:/C3 2
1 JUICE
1A ORANGE
1B GRAPEFRUIT
2 CEREAL
2A OATMEAL
2A17 WITH BROWN SUGAR AND CREAM
2B CREAM OF WHEAT
2C OAT FLAKES
3 BGGS
3A SCRAMBLED
3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3€ BOILED
4 BEVERAGE
4A HOT CHOCOLATE
4B TEA
4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK:_;

QUESTIONS?

¥*How do I print just branch 37%

THE USER PRINTS BRANCH 3 USING THE PRINT COMMAND,

’

PROCEDURE: HE TYPES “PRINT °, FOLLOWED BY

4 4 4

“BRANCH “, "3, <CR>, VIEWSPECS, AND <CR>.

Answer obtained by simple deductive inferencing.

REVIEW OF LESSON TWO
Lesson Two has introduced the following commands:

Insert command

Create command

Substitute command for words in statements
for characters in statements
for characters in branches

18

QUESTIONS?

ENLS* The student can summon NLS in order to practice
(or just to play) without fear of messing up his
work.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT €: Print OK:/€C: Statement at A: 2B;
Wiis ==

2B CéEAM OF WHEAT

EDIT C: Substitute C: Character in C: Statement at A: 2B

b
<New CHARACTER> T:

U;
<0ld CHARACTER> T: EA;
Finished? Y/N: Y OK:_;
Substitutions made: 2 The student replaced the characters

EA for U.

EDIT C: \
2B CRUM OF WHUT
EDIT C: Print OK:/C: Branch at A: "EGGS";

\T0 I)
3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED
EDIT C: Substitute C: Character in C: Branch at A: 3;
<{New CHARACTER> T: *;
<0l1d CHARACTER> T: =;
Finished?® Y¥/N: ¥ OK:i_ 35
Substitutions made: 3
EDIT C: Print OK:/C: C: Branch at A: 3B;
Vi
3B FRIED
3B1 SUNNY*SIDE*UP
3B2 OVER¥*EASY
EDIT C: Done OK: ;

...THROWING AWAY THIS COPY
The student leaves NLS returning to the

"QUESTIONS?' level. The "Transparent overlay'" on
which he has scribbled disappears without trace.

B,

¥Print branch 3B, please¥* Commands can be issued in
natural language.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT Bt (Brint) OK/G: (Branch) Bz (3B) (<CR3):

V: (<CR>):
3B FRIED
3B1 SUNNY-SIDE-UP The Tutor demonstrates how to do tit.
3B2 OVER-EASY Notice that the file is in its original
EDIT C: (Done) OK: (<KCR>); gtate.

...THROWING AWAY THIS COPY

It has also introduced the following concepts:

echoing

field

level

level zero

L: prompt

level adjustment
up (u)
down (d)
same (<CR>)

repeat mode
<CTRL-B>
question mark facility

QUESTIONS?

¥*What can 1 type after L:7%

. ’ ’, ’,

THE USER TYPES <CR>, 'u, 'd°, OR A COMBINATION

OF “u” AND “d° AFTER THE L: PROMPT.

*What statements are at level 27%

THE STATEMENTS AT LEVEL 2 ARE:
1A 1B 2A 2B 2C 3A 3B 3C 4A UB 4C

*What would be the level of statement 14ac3?%

THE LEVEL OF STATEMENT 14AC3 IS:
3

20

How does it work

Much of NLS-SCHOLAR s knowledge is derived from stored
data and from a set of built in routines that manipulate and
retrieve those data in response to gueries. The data base
is a semantic network of descriptive information that is
represented 1in attribute-value format. It contains
descriptions of actions and their purposes, descriotions of
the procedures necessary to accomplish these actions, and
descriptions of their effects and consequences. For
example, the semantic network contains a representation of
the description of the ©purpose of, and the procedure for
issuing, the delete command. An English rendition of the
this attribute-value representation would be: "The purpose
of the delete command is to delete a structure unit", and
"The procedure (for deleting a structure unit) is for the
user to tyve the word DELETE, followed by the name of a
structure unit, its address, and two carriage returns." The
semantic network also contains many other kinds of
attributes, among them the definition of concepts, and the
interrelationships between concepts such as "A statement is

an instance of (or a name of) a structure unit."

The retrieval routines, initiated by a aquery, search
the semantic network for information relevant to the query.
For example, if a student wants to know what the delete

command does, his qguestion would translate into a query that

would essentially mean: "Find the purpose of the delete
command" . The retrieval routines would attempt several
different matching procedures that would finally vyield: "The

purpose of the delete command 1is to delete a structure

unit. "

The retrieval process is assisted by built-in
"reasoning" strategies that are called upon when the
matching procedures fail. In fact, 1in many <cases the

desired 1information 1is not stored specifically as demanded
by the aquery, but may be inferred from available
information. For example, 1if the gquery were for the
procedure for deleting a statement, our matching procedures
would fail. However, the system would still be able to
derive an answer via simple deductive inference; it knows
that a statement is a kind of structure unit, and it knows
how to delete a structure unit, therefore the procedure is

to "type DELETE, followed by STATEMENT, etc."

It is important to observe the introspective character
of this form of cognition. We have a) a data base that is
static, internal, and is made out of symbols, and b) a set
of built-in inference strategies and retrieval routines that

operate on those static, internal, symbolic representations.

Inferencing and retrieval mechanisms such as the ones
just described are the seat of the abstract "thinking"

abilities of NLS-SCHOLAR. As such, they are not vyet very

22

powerful, and much can be (and will be) done to improve
them.* However, it is important to stress here that there 1is
more to "intelligence" than powerful manipulation of

symbols.

People's intelligent behavior is not based solely on
internal representations and conceptualizations and their
attendant reasoning processes. A person’'s data base is not
only memory, and his ‘"retrieval routines" are not solely
introspective: he uses the world as a data base and his
senses to retrieve information from it. I don’'t need to
have in my head a representation of what is behind my chair;

if I need to know, I can just turn around, look, and see!

Due to the fact that NLS-SCHOLAR deals with a "world”
(NLS's world) with which it shares much of its own being,
(i.e. it is a program that deals with the use of another
computer program) it was relatively easy to endow it with
some of this latter kind of "intelligence". For example, to
make NLS-SCHOLAR "aware" of the state of the student’s work,
all we had to do was design the system so that it could use
NLS as a sort of sensor. Thus when the student, lost in
thought, asks a question about his work space (such as ‘What
was the address of that statement that contained "DESSERT"?’
or simply "Where is "DESSERT"?) NLS-SCHOLAR manufactures an

*Much work has been done on this problem in the SCHOLAR
system that deals with the geography of South America [9].

23

apposite command, has it executed (invisibly) by LISP-NLS
(see below), and uses the result to construct an answer.
Moreover, NLS-SCHOLAR is designed to use LISP-NLS as |its
seat of ©pragmatic inferential knowledge. For example,
sometimes it is easier to obtain an answer by actually
"doing" and then "looking and seeing", rather than by
deducing the answer via logical inferences. This method |is
very powerful -- sometimes it is not just easier to do than
to deduce: it is the only way we know of deriving an answer.
A new breed of "intelligent" CAI systems based on this
approach has been pioneered by Brown and his SOPHIE

system [6,7].

NLS-SCHOLAR can also combine the two forms of
knowledge. That 1s, 1t can use its semantic network and
reasoning routines to infer a procedure (such as how to
delete a statement) and then use this procedure to
synthesize an NLS command and have it executed. Thus

NLS-SCHOLAR can both describe and do things.

In the above discussion we carefully avoided asserting
that NLS-SCHOLAR actually uses the real NLS system. For a
number of reasons, we preferred to write our own version of
NLS in INTERLISP [10], and to wait until NLS-SCHOLAR reaches
a stable state before interfacing it with the real NLS. We
have taken elaborate precautions to ensure that this switch

can be done with a minimum of re-programming. All exchanges

24

between NLS-SCHOLAR and our LISP-NLS take place at the
surface language 1level (the system does manufacture
NLS-executable command strings that are then executed by
LISP-NLS) and we have consistently resisted the temptation

to short-cut this path.

SECTION II - NLS-SCHOLAR AS A TUTOR

Introduction

Having evolved from SCHOLAR [2,3], NLS-SCHOLAR 1is an
interactive, mixed-initiative system that 1is capable of
answering freely interspersed guestions posed by a student
in the course of a tutorial session. However, the
differences in subject matter (text editing, computer based
systems vs. geography of South America) and in aim
(learning how to use a system vs. learning descriptions and
names) are of such magnitude that NLS-SCHOLAR and regular

SCHOLAR differ substantially in a number of important ways.

Consider first the differences in subject matter. Most
people know the fundamental concepts and relations of
geography, so that teaching the geographvy of South America
doesn’t have to start by introducing the concepts of
country, capital, government, etc., and the relations
between them, e.qg. that countries have capitals, that
governments reside in capitals. Rather, the instantiation
of these relationships can be taught right away, e.g. that
Colombia is a country in South America, and that its capital
is Bogota. People’s common knowledge of geography also
enables them to ask meaningful and instructive guestions
from the start. Few people, however, know the fundamental

concepts, relations, and operations that characterize the

26

use of a computer based text editing system, and they cannot
learn very much about it by asking questions because they do
not know what to ask for or how to ask for what they want to
learn. Consequently, teaching must begin at a more basic

level.

Instructive interactions must be based on an underlying
conceptual structure that 1is common to the tutor and the
student. If this underlying structure is rich (as in the
case of geography), teaching 1is simple, and learning can
benefit considerably from the student’s being able to ask
meaningful questions from the start. If the structure is
shallow (as in the case of text editing systems) it must be
built up before teaching can go very far. Therefore, one of
the main goals of our work in NLS-SCHOLAR was to design and
implement a tutorial mode especially adapted to this

purpose.

Consider now the differences in aim. Most people can
learn the geography of a region without much manipulation of
the new facts that they learn. These facts sort of fit in
fixed slots that are there beforehand and that represent
well understood concepts. Few people, however, can really
learn to edit text without practicing, that is without being
able to perform editing operations and without being able to
ask questions about the state of their work. Therefore, the

other main goal of our work was to develop the means to

2

couple closely the "NLS world" with NLS-SCHOLAR, so that the
student could be put in contact with NLS, while NLS-SCHOLAR,
overseeing all this, could bring about SCHOLAR-like

abilities to help the student when needed.

In what follows we describe how NLS-SCHOLAR teaches the
fundamental concepts underlying text editing with NLS, and
how it interfaces with NLS so that students can practice

what they learn while remaining under tutorial supervision.

Teaching NLS fundamentals: The Primer

As discussed above, teaching people how to use a text
editing system 1is entirely different from teaching them
about the geography of a region. Therefore, for a SCHOLAR
system to teach NLS effectively, a new set of tutorial
strategies had to be develobed in order to cope with the

more basic concepts that must be introduced to the student.

Following a now well established path for developing
these strategies [ll], we set out first to find out how
human tutors teach NLS and what are the most important and
effective methods that good teachers use. We first studied
the course offered at BBN by members of the Augmentation
Research Center, and one of us (Laura Gould), having had
considerable experience in teaching the use of computers to
Humanities students, undertook to teach NLS to a small

number of students (members of BBN s secretarial staff). An

analysis of the protocols of the teaching sessions pointed

to several problem areas.

The difficulties of teaching NLS concepts solely by
symbolic and formal descriptions can be appreciated in the
following example concerning the way NLS files are organized

and function.

Consider this portion of the DINNER file:

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON
2C1 WITH CREAM SAUCE
2D SCALLOPS
2D1 BROILED
2D2 FRIED

The structure of NLS files is such that statement numbers
represent slots or shelves that are provided by the system.
If we remove a statement, another statement which follows it
may be "promoted" to take its place, causing a reassignment
of statement numbers. For example, after deleting the

statement containing the PRIME RIBS, the file would be left

as:

2 ENTREE
2A FRIED CHICKEN
2B SALMON

2Bl WITH CREAM SAUCE
2C SCALLOPS

2C1 BROILED

2C2 FRIED

29

This action and its effects can undoubtedly be described
formally without referring to any actual file. But how much

simpler it is to do it by way of an example!

The main conclusion that we extracted ({12] was that
while effective teaching still depended on describing facts,
actions, purposes, procedures, etc. symbolically, the most
effective elements of the teaching situation were the
ostensive ones, namely:

1) teaching by 1letting the students do things by
themselves and helping them correct their mistakes.

2) teaching by way of examples

3) teaching by demonstrating actions (the tutor typing
commands for the student, for example, when a
complicated new command is being introduced or when

the student is unable to proceed)

The Primer is like a scenario for the form NLS-SCHOLAR
adopts when 1in tutorial mode. It is the conseaquence of
skillfully organizing, segmenting, presenting and sequencing
knowledge about ©NLS in a manner that results in easy and
comfortable 1learning. (For a complete version of the

Primer, see the Appendix.)

In tutorial mode, NLS~SCHOLAR consists of an
agenda-driven seadquence of tutorial units. The elements of

these tutorial units are:

30

a) delivering information

b) asking auestions of the student

c) showing examples

d) demonstrating actions

e) requesting the student to perform tasks and exercises,
evaluating them, and making the appropriate comments
to the student

f) pausing to answer qguestions from the student

Elements a) and f) are always present.

The way things work 1is as follows. NLS-SCHOLAR
presents exposition, embedded in which is a series of tasks.
Fairly freauently, the system stops to ask whether there are
any dquestions, by typing QUESTIONS? in the margin and then
printing an asterisk on the next line. If the student has
no questions he types an asterisk followed by a <CR> and the
exposition continues. If he has a question he type it
directly following the "*" and terminates it with another
"*" and a carriage return (<KCR>) in typical SCHOLAR fashion.
When the gquestion has been answered, NLS-SCHOLAR prints
another "*" in the margin indicating that it expects another
guestion. If the student has no more questions, he types

*{CR> and NLS-SCHOLAR vproceeds.

Whenever a task 1s proposed, NLS-SCHOLAR puts the

student 1in touch with NLS. This causes the herald EDIT and

31

the prompt C: to appear as EDIT C: in the left margin. The
student can then type one of four things:
(1) an NLS command term
(2) a "?" to obtain a list of all command terms which are
possible at that point
(3) a "*" to indicate that he wants to ask a gquestion
(4) "DONE <CR>" to indicate that he has completed the

task and wishes to have it evaluated

If he does (1) his actions will be stored for 1later
evaluation. When his command is terminated, a new EDIT C:

will appear in the margin.

If he does (2) a list of possible command terms will be
printed. He should then type one of them and proceed with

his command.

If he does (3) his question will be answered and a new

EDIT C: will appear.

If he does (4) his performance of the task will be
evaluated. If he has done the task correctly he will be
praised and the exposition will continue. If he has done
the task incorrectly his mistake will be pointed out to him,
his file restored to its form before the task was 1initiated
and he will be asked to do it again. He may ask the system

to show him how to do it, or even ask the system to do it

32

for him if he is in real trouble.

Occasionally NLS-SCHOLAR will ask a qguestion of the
student. At such a point, a "*" is printed in the left
margin, NLS-SCHOLAR waits for the student to answer the

guestion, and then evaluates his answer.

Endowing NLS-SCHOLAR with “awareness’

In order to make NLS-SCHOLAR ‘aware’” of what a user
does with NLS, we had to develop a coupling that enabled
NLS-SCHOLAR to use NLS to ‘sense’ the state of a wuser’s
file. This coupling constitutes an exceedingly powerful
tool. First, observe that it makes it possible for the
student to ask dquestions not only about descriptions,
definitions, orocedures, etc. (such as "What is a prompt,"
"What does viewspec n do," or "How do I delete a statement")
but also about the current state of the student’ s work (such
as "What 1is the content of statement 3A", or "Where is the
Cm now" or "Print the current statement" all relative to the
present state of the student’s file). Thus, in addition to
searching for answers 1in a semantic network in the
"standard" SCHOLAR way, we gain the ability of interrogating
the NLS world as well. Second, this coupling provides an
easy way of performing a type of inference that would be
very hard to perform deductively. Suppose a student asked

’

If I deleted statement 3241, what would then be the number

383

of the statement containing "TOMATO"? Finding the answer by
deductive reasoning 1is ©possible but difficult. Obtaining
the answer by "sotto voce" deleting statement 3A1 and then
seeing where the "TOMATO" statement ends up is much easier
and very powerful. In Third, it becomes possible to
evaluate easily a student’s solution to a proposed task --
all the system has to do is to have available the correct
sequence of commands for the task, perform them on a fresh
copy of the current file, and then compare the results (in
terms of the state of this new NLS file) with the student’s

Eile,

The LISP-NLS system

In order for NLS-SCHOLAR to teach NLS ostensively in
the manner we have descrihed, and in order for it to answer
guestions about the current state of the student’'s work, it
is clear that NLS itself must be incorporated and interfaced
with NLS-SCHOLAR. However, although using the real NLS for
this purpose was entirely feasible (everything is on TENEX),
we decided instead to implement the EDIT subsystem of NLS in
INTERLISP. The reasons for this early decision were
manyfold:

a) NLS was undergoing changes (it still is)
b} building a communication interface would have consumed
a larger fraction of our limited funds than

implementing our own LISP-NLS

c) the real NLS is a very complex system and we wanted to
test the feasibility of our approach in an environment

34

we understood well
d) since NLS-SCHOLAR is written in INTERLISP,

inter-process communication and control would be
facilitated

The results were very beneficial. As it turned out, it
was not only simple indeed to make NLS-SCHOLAR talk to
LISP-NLS, but we learned a great deal from designing it such
that interfacing NLS-SCHOLAR with the real NLS will require
a minimum of re-programming. We fully realize that if our
system 1is to attain the degree of operational usefulness it
is capable of, it will have to be within the context of
normal usage of the real NLS. This we expect to accomplish

in the near future.

LISP-NLS is capable of performing almost all of the
commands in the editing subsystem of NLS, and to users of
NLS-SCHOLAR it looks exactly like the real thing. Rather
than attempting to -describe 1its inner workings, let us
instead describe it operationally, from the point of view of

performing the functions required by NLS-SCHOLAR.

The top function of LISP-NLS is called NLSPARSE and it
takes as an argument a single character. When a command is
being issued for LISP-NLS to perform, the command string is
fed to it character by character. NLSPARSE digests the
character and returns as a value a list of three elements.

The first element is a parameter used to determine what to

35

do next (feed the next character, signal that the command
has been completed, etc.). The second element 1is the
"echo", i.e. what NLS normally prints when one types a
character (the character itself plus whatever prompts and
heralds may be reguired at the time). For example, 1in
expert mode, typing "I" as the first character of a command
results in NLS echoing "Insert C:". The third element
appears only after the character that completes a command
has been fed to NLSPARSE and it contains the response (what
NLS normally prints as a result of executing the command)
plus a wealth of data about the state of the NLS file as a
result of having performed the command. These data are: the
parsed command string, a representation of the file’'s
structure, the position of the control marker, the state of
the viewspecs, and a list of what was printed by means of
any of the various print commands available in NLS. These
data are used by the task evaluation machinery to figure out

whether or not a student performed a task correctly.

Observe that the passing of characters and the
confinement of output to "echoes" and responses makes it
possible to use LISP-NLS very flexibly. Input characters,
for example, can be fed to it as one normally would to NLS,
namely by typing them on a terminal. Alternatively, they
may be fed to LISP-NLS by retrieving them from the data base
{having commands stored under each task in the data base

makes it possible for NLS-SCHOLAR to simulate the typing of

36

commands by a human tutor).

Echoes and resvonses can be similarly controlled. 1o o
example, when the Question Answering system synthesizes a
command to LISP-NLS, echoes are not used at all and
responses are not printed directly but are handed back to
the Question Answering system to be used in constructing a

response to the student,

In addition, a context manipulation machinery allows
the storing and retrieving of environments, and the creation
of new ones. This 1is necessary when, for example, the
student asks a dquestion that requires the Q/A system to
synthesize a command that could alter the state of his file.
For example, 1if the student asked "What is the content of
statement 3?" and the control marker were positioned at
statement 1, the Q/A system would have to synthesize a
command that would result in the CM being positioned to
statement 3 in order to answer the gquestion. However, all
evidence of this command s execution must be removed -- in
particular the control marker must be repositioned to
statement 1 -- or the student will be confused by the state
of his file which has been manipulated without his
knowledge. Saving the student’s environment, verforming
invisible commands on a disposable copy of it and restoring
the environment afterwards, solves the problem. Other

examples of context manipulation can be seen in Section IV,

37

in the description of the task monitoring machinery.

38

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMS

Questions and Answers: an Overview

In the course of a lesson, or in the course of their
own independent work, users of NLS-SCHOLAR can ask gquestions
for the system to answer. 1In the course of a 1lesson the
system also generates gquestions for the student to answer
and then evaluates those answers. The system that answers
student-generated gquestions is called Student/QA, while the
system that generates questions and evaluates a student’s
answers 1is called Tutor/QA. For consistency, Tutor/QA must
be able to generate the same set of questions that
Student/QA can answer. This enables Tutor/QA to perform
answer evaluation by simply passing off the dquestion it
generates to Student/QA to derive the correct answer. This
correct answer can then be compared to the student’s answer

and appropriate action taken.

Because both the Student/QA and Tutor/QA systems
involve the same set of requests, we have designed both to
use the same representation of the meaning of a reauest. 1In
this way, Student/QA responds to a student “s request by
varsing it into this representation, or "semantic form".
This semantic form 1is just a LISP procedure which, when
executed, derives the answer. "Semantic forms" are also

used by Tutor/QA to produce a question to present to the

39

student (i.e. one which if the student had asked it would
have parsed 1into the identical form). At the same time it
evaluates this semantic form to derive the answer and
compares it with the student’s answer. Both what these
forms look like, how they are derived, and what it means to
evaluate them and get an answer will become clearer in the

following discussion of the two systems and their interplay.

Student/QA

Student/QA 1is responsible for answering students’
questions about the EDIT subsystem of NLS and about the
current state of his NLS file. It derives its answers from
two sources of information: a data base containing static

descriptions, and NLS itself (actually LISP-NLS).

Like previous SCHOLAR systems, NLS-SCHOLAR has a data
base organized as a semantic network containing definitions
and examvles of concepts, descriptions of procedures, etc.
This semantic network represents time-invariant factual
information about NLS and has been structured so as to
facilitate the kinds of inferences reaquired for answering
questions such as:

WHAT IS A HERALD?

GIVE ME SOME EXAMPLES OF STRUCTURE UNITS.

HOW DO I PRINT THE NEXT STATEMENT?
HOW DO I DELETE THE LAST CHARACTER THAT I 'VE TYPED?

But in order for NLS-SCHOLAR to respond to some of the real

40

needs of a student engaged in 1learning NLS, it becomes
necessary for Student/QA to handle questions relating to
what the student is doing, i.e. the state of the student’s
work with his NLS file. A few questions of this type are:

WHAT IS THE CONTENT OF STATEMENT 3A?

WHERE ARE THE "SCALLOPS" NOW?

WHAT STATEMENTS ARE AT LEVEL 3?
None of these questions can be answered with the static
information 1in the semantic network (although this static
information is sometimes used to synthesize a plan for
obtaining the answer). The semantic interpretation of this
type of aquestion instead results in a call to LISP-NLS to
perform a series of synthesized NLS commands (executed
invisibly to the student). This means that there must be a
system (discussed in Section V) which saves the student’s
environment, verforms the synthesized commands, restores the
student 's environment, and hands back the result of

executing these commands to Student/QA which 1in turn

responds to the student.

The Parser:

The NLS-SCHOLAR parser performs a top-down,
semantically directed case analysis of a sentence based on
the grammar described in BNF form in Figure 3. This method
is much 1like that wused 1in the SOPHIE system [6,7]. The
varser produces a semantic form that contains information

similar to that derived from the "English Comprehender"”" of

41

NET-SCHOLAR [5], including the assignment of case
relationships existing between the main verb and the noun
phrases of the input sentence. In addition, this method
determines the general category that the request falls into
(a reaquest for a definition, a reguest for a procedure, a
reguest for the address of some word in the current file,
etc.) For example, for the request:
HOW DO I DELETE STATEMENT 2A°?

the semantic form would look like:

(QFIND/PROCEDURE ((AGENT USER)

(VERB DELETE)
(OBJ STATEMENT (ADDR 2A))))

The semantic form of all reguests is a LISP function which
can be EVALuated, (that 1is, OQFIND/PROCEDURE 1is a LISP
function to find a procedure in the data base; it takes a
case-structure parse as 1ts 1input, retrieves the correct
information from the data base and calls the Output package
to output the answer in sentence format). To give a better
idea of this process, we will follow through parsing,
retrieval and output for the reguest:

HOW DO I DELETE STATEMENT 2A?

Parsing in Detail:

The parser first does a pre-scan of the sentence. This
pre-scan does spelling correction (using the routines from

the BBN INTERLISP DWIM facility [13]1), abbreviation

42

checking, and compound word checking, making words like
"DELETE COMMAND" into a single concept "DELETE\COMMAND".
This prescan rewrites the input as "HOW\DO\I DELETE

STATEMENT 2A".

Parsing proper begins at this point. The description
will be best understood by following it through with the BNF
description of the grammar in Figure 3. In fact, the
parsing algorithm 1is almost isomorphic to the grammar, and
many of the LISP functions that make up the parser have the

same names as the elements of the grammar.

The top-level function <REQUEST> first checks to see if
the sentence 1is a request for the definition of something.
In our case it isn’t. It continues its depth-first search
until it reaches <PROCEDURE/REQ> which first checks to see
if the sentence begins with the concept "HOW\DO\I". This
succeeds and RESULT, a global variable that keeps track of
the parse, is set to:

(QFIND/PROCEDURE (AGENT USER))
"HOW\DO\I" is removed from the string. The parser then
tries to locate an <ACTION/SPEC>, that is, a <VERB> plus any
number of <OBJ> s, with the remaining string "DELETE

STATEMENT 2A".

43

FIGURE 3 -- A BNF DESCRIPTION OF THE GRAMMAR

<REQUEST>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ>
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
<PROCEDURE/REQ>
<INSTR/REQ>
<POSITION/REQ>
<NLS/ACTION/REQ>

<DEFINE/REQ>:= DEFINE <NOUN>

WHAT DOES <NOUN> MEAN

WHAT DOES <NOUN> STAND FOR

WHAT DOES <NOUN> DO

<WHATIS/REQ>:= WHAT IS THE PURPOSE OF <NOUN>

WHAT IS THE CONTENT OF <STR+ADDR>

WHAT IS THE LEVEL OF <STR+ADDR>

WHAT IS THE ADDRESS OF <STR+ADDR>

WHAT ARE EXAMPLES OF <NOUN>

WHAT IS THE DEFINITION OF <NOUN>

WHAT IS <CURRENT/PART>

WHAT IS <STR+ADDR>

WHAT ARE <NOUN>

WHAT ARE <STRUCTURAL> AT <LEVEL/PART>

WHAT ARE <STRUCTURAL> IN <FILE/PART>

WHAT IS <NOUN>

**ALSO 'TELL\ME, GIVE\ME, TELL\ME\ABOUT 1IN
PLACE OF ‘WHAT 158°

<CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING>
<PARTS-IN-PART/REQ>:= WHAT <STRUCTURAL> ARE IN <FILE/PART>
<{PARTS-IN-LEVEL/REQ>:= WHAT <STRUCTURAL> ARE AT <LEVEL/PART>
<PROCEDURE/REQ>:= HOW\DO\I <ACTION/SPEC>
TELL\ME\HOW\TO <ACTION/SPEC>
TELL\ME\ABOUT <ACTION/SPEC>
<INSTR/REQ>:= WHAT [NLS\COMMAND] <ACTION/SPEC>
<POSITION/REQ>:= WHERE AM I
WHERE IS THE CM
WHERE IS <STR+ADDR>
<NLS/ACTION/REQ>:= <ACTION/SPEC>

DO IT
DO <TASK>

44

WHAT HAPPENED

WHAT IS WRONG

HOW\DO\I DO THIS TASK
HOW\DO\I DO <TASK>
SHOW\ME\HOW\TO DO THIS

L]

<TASK>:= TASK <NUMBER>
<NUMBER>:= @ ! 1 ! 21 3 ! 41516 1! 71819
<ACTION/SPEC>:= <VERB> [<OBJ>]

<VERB>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "VERB"

<OBJ>:= <NOUN/PHRASE> [<OBJ>]
<RELATIONAL> <NOUN/PHRASE> [<OBJ>]

<RELATIONAL>:= ABOVE ! AFTER ! AT ! BEFORE ! BELOW
FOLLOW ! FOLLOWING ! FOR ! FROM
IN ! NEXT\TO ! OF
THROUGHOUT ! TO ! USING ! WITH
THE/BEGINNING/OF ! THE/END/OF ! FOLLOWING

<NOUN/PHRASE>:= <NOUN>
<STR+ADDR>

<STR+ADDR>:= <FILE/PART>
THE <STRUCTURAL> <STRING>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
<STRING>

<STRUCTURAL>:= STATEMENT ! BRANCH ! PLEX ! GROUP
<TEXTUAL>:= WORD ! CHARACTER ! VISIBLE ! INVISIBLE

<CURRENT\PART>:= THE CURRENT\STATEMENT
THE NEXT\STATEMENT
THE BACK\STATEMENT
THE CURRENT\VIEWSPECS
THE CURRENT\ADDRESS
THE CURRENT\STATEMENT\NUMBER
THE CURRENT\POSITION\OF\THE\CM
THE CURRENT\FILE

<FILE/PART>:= STATEMENT\®
STATEMENT <ADDRESS>
BRANCH <ADDRESS>
PLEX <ADDRESS>
GROUP <ADDRESS> <ADDRESS>

45

<{ADDRESS>:= AN ATOM WHOSE FIRST CHARACTER IS A NUMBER
<LEVEL/PART>:= LEVEL <NUMBER>

<TASK>:= TASK <NUMBER>

<STRING>:= ACTUAL PIECE OF TEXT IN QUOTES ("")

<NOUN>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "NOUN"

46

<ACTION/SPEC> finds the verb "DELETE" and then succeeds
in finding a sentence object that matches <FILE/PART> under
<NOUN/PHRASE>, <ACTION/SPEC> appends to RESULT the
expression (VERB DELETE) (OBJ STATEMENT (ADDR 2A)). Parsing
is now completed having reached a terminal state in the
grammar. The value for RESULT is:
(QFIND/PROCEDURE ((AGENT USER)
(VERB DELETE)
(OBJ STATEMENT (ADDR 2A))))
RESULT is now EVALuated retrieving the correct procedure
from the data base and calling the Output package to

construct the sentences to be typed out to the student.

There are objections to having a non-general parsing
algorithm, but for NLS we believe that the pros outweigh the
cons. This algorithm is fast* and it can be expanded (it
has been changed already many times) to cover the types of
gquestions we discover our students asking most often. If
experience with the SOPHIE system, which 1is wused for
electronic troubleshooting, is a good indication of what we
may expect, then we shall not run into too much difficulty

with this kind of parser.

* A typical request parses in ms.

47

Retrieval:

As discussed previously, we are dealing with a new and
guite interesting facet of knowledge: that of the
interaction of static and dynamic information. When the
student asks "WHAT DOES CTRL-X DO?" the answer is a static
piece of knowledge retrievable from the semantic network.
But when the student asks "WHAT IS THE CURRENT STATEMENT?"
the answer will not be found in the semantic network; it
depends on what the student is doing and must be extracted
from his work space. When a request 1is found to require
information about the state of a student’'s file, the
necessary NLS commands are formulated by the top-level
retrieval function; LISP-NLS 1is <called to perform the
commands and to return the result of performing them. In
this case, the retrieval function QFIND/CONTENT requests
LISP-NLS to perform the NLS command "\" which returns the

contents of the current statement.

These two examples elucidate the need for two kinds of
"data bases": a static semantic network and a dynamic NLS
file. So far we have seen their use in separate and clearly
distinguishable <cases. However, when the student reqguests
the Tutor to perform a specific NLS command for him (for
example, he may say "PLEASE PRINT BRANCH 6A FOR ME") then
the two data bases must interact in order to ©oproduce a

response. To fulfill that reaquest, Student/QA must first

48

find the procedure for printing branches. This procedure is
very general and static so it is stored in the semantic
network. Loosely speaking, it states that one should type
"PRINT", followed by the name of the structure unit to be
printed, its address, <CR>, viewspecs, and <CR>. To obtain
an answer, Student/QA must wuse this general piece of
knowledge as a plan to synthesize a legal NLS command. i
must now "instantiate", according to the information
supplied in the student’s request, the name of the structure
unit, its address, and the viewspecs. For this request, the
NLS command formulated would be:

Print Branch 6A <CR> <CR>

Instantiation is made possible by having a set of
instantiation variables containing the current instance of a
number of generic concepts. This collection of instances is
cleared before a question 1is asked, and is filled in (if
required) during the parsing of the reguest. Before an
answer is constructed or an NLS command synthesized,
Student/QA checks to see if the instantiation variables were
filled in during parsing, and if so, uses them in place of

the generic terms.

In this example all the generic terms in the procedure
had to be instantiated; that is, the generic term "structure
unit" is the word "BRANCH", the address is "6A", etc. This

is because without instantiating all these generic terms,

49

the NLS command would not be considered 1legal -- LISP-NLS
would not be able to perform it. Sometimes instantiating
specific terms for more general ones is not really critical,
but 1s more a matter of producing a better response to a
student’s question. For example, statements, branches,
groups and plexes are all instances of structure units. The
procedure for, say, deleting a statement is not stored
individually since the procedure is the same for deleting
any structure unit. Only the general rule 1is stored.
Because of this, instantiation of certain objects in the
semantic network is preferable (but not essential) so that
guestions like "HOW DO I DELETE A STATEMENT" do not get
answered "THE USER DELETES A STRUCTURE UNIT WITH THE DELETE

COMMAND" .

Output:

The Output package is essentially the same as that of
NET-SCHOLAR with one important addition. We wished to allow
items to be instantiated to produce a meaningful response or
a "legal" NLS command. In the semantic network this shows
up as a new structure made up of three elements: S$INS, a
variable, and a piece of regular SCHOLAR data base. (See

Figure 4.)

When the Outpbut system encounters a list beginning with

SINS, 1like (SINS XADDSTR ADDRESS), it checks to see if the

second item, in this case the variable XADDSTR, has a value
(set during the parse). If so it wuses this value in
constructing the answer. Otherwise it uses the third item,
ADDRESS, a generic term like any regular piece of SCHOLAR

data base.

For example, 1in the guestion "HOW DO I DELETE A
STATEMENT?" the parser sets the variable XO0BJ to STATEMENT,
and the variable XOBJSTR to 'STATEMENT . Retrieval finds
the piece of data base answering the general guestion "HOW
DO I DELETE A STRUCTURE UNIT?" which is the procedure listed
in Figure 4. This 1is sent off to Output which creates a
sentence with the appropriate instantiated elements. (X0BJ
and XOBJSTR are instantiated: that 1is, their wvalues,
STATEMENT and 'STATEMENT respectively, are used. No value
for XADDSTR was assigned during the parse (the student
didn't specify a specific address) so the third item in the
SINS 1list, the generic term ADDRESS, is used. The response

is:

THE USER DELETES A STATEMENT USING THE DELETE COMMAND.
PROCEDURE: HE TYPES 'DELETE’, FOLLOWED BY "STATEMENT , AN
ADDRESS, <CR>, AND <CR>.

FIGURE 4 - DATA BASE ENTRY FOR "DELETE\COMMAND"

DELETE\COMMAND
(PURPOSE (I 2)
(DELETE
NIL
(AGENT NIL USER)
(OBJ NIL (SINS XOBJ (SEOR STRUCTURE\UNIT STRING\UNIT)))
(INSTR NIL DELETE\COMMAND)
(PROCEDURE
NIL
(TYPE
NIL
(AGENT NIL USER)
(OBJ
NIL
(SSEQ "DELETE "
(SINS XOBJSTR
(SEOR (NAME NIL (OF NIL STRUCTURE\UNIT))
(NAME NIL (OF NIL STRING\UNIT))))
(SINS XADDSTR ADDRESS)
<CR> <CR>)))))

The Tutor/QA system was designed to make wuse of the
same semantic form that the Student/QA system produces
during a parse. This integration allows us to make wuse of
Student/QA’s retrieval functions to derive the «correct
answer to a Tutor-—-generated gquestion so that this answer can
be checked against the student 's. This integration of both
QA systems is illustrated in Figure 5. In this diagram the
blocks represent the specialists some of which are shared
among both systems. The arcs are labelled with both inputs
to various blocks and their outputs. Also some tests are
made explicit on the arcs, like whether it was the student

or the Tutor who initiated the request.

o2

I s
— o o e e o e w

L L Haar B el Tepy n_n__a—uu.
ﬁ. il g Bl BTt | -::;:.m o Heraa! Goes TEE A 5

AN
Gl® FiToye"'
e VFL) 3.: g
¥ o,

\I/__" \.'/]
s
> A0 / Ly3anis } * | #35044 - Aq i

|- SRl owd r 3079 SAAuALgLS JMHm
PIimsny <._, N T] _ i
1
A wBE ub® X fl\\x # y

1

Riwait)
FRERR BT 5

.
’.‘.__...—-""'-.
(i 279)

\
3 3
-
)
1
A
3,
e
<
-
rornwsns - i1 i | \ .
/ s y»»d.. l\. b] s = St ANnALng —.A o T e R TG LR LE M " PRI, L
~ SIIIT wsisdg 1y ar.h..cr“......n..__.. B Oy Jenpr ot L _/;,Mn.(\. ——m = /
- e

8 Mg

FIGURL 5 - INTEGRATION OF TUTOR/QA AND STUDENT/QA

The path from 1Initiator to Parser to Evaluator to
Output 1is that of the Student/QA system, that is, the
Initiator is the student. (This pathway is marked by
double-line arcs.) Tutor/QA’s integration of its pathways

with this one will be made clearer in the following section.

Tutor /QA System s Organization:

This system is activated by a call to Tutor/QA to
generate a suitable question to ask the student. The
general type of question is designated by the agenda, and is
represented as an incomplete semantic form exactly like that
produced by the parse of a student’s request in Student/QA
but with several operands represented as variables whose

values have yet to be filled in.

This form is handed to the Form-Completer who chooses
"good" wvalues for the variables in the incomplete semantic
form. It often arrives at "good" choices by taking a 1look
at the <current NLS file with a call to LISP-NLS. Once a
semantic form is complete (all variables filled 1in), then
two activities take place simultaneously. One is a call to
the Evaluator who evaluates the semantic form, i.e.
retrieves the correct answer. The second is a call to the
De-Parser, a specialist who takes the semantic form and, in
a sense, de-parses 1it; 1t reverses the process done in

Student/QA by going from the semantic form back to 1its

54

canonical surface representation. This sur face
representation (the gquestion phrased in "English") 1is then
presented to the student. The student’s response to it is
compared with the correct answer derived from the Evaluator.
The Answer Comparer decides whether the responses are
eguivalent. It responds to the student appropriately and
returns a message to Tutor/QA as to how the student did with
this question. Tutor/QA can then decide whether it feels it
should generate another gquestion of this type (if the
student did poorly), or whether it should return so that the
lesson may continue. If the decision is made to go on,
Tutor/QA exits returning control over to the system
executive. If it decides to <continue asking similar
questions until the student has gained sufficient
familiarity with the concept that it 1is +trying to get
across, Tutor/QA calls the Form-Completer once again to
generate new values for the variables and the entire process

begins again.

It should be noted that at the point when the student
is asked the Tutor-generated guestion, he may in turn ask a
question of his own (which activates Student/QA), work
directly with the NLS file with a call to NLS, or quit for

continuation at a later time.

25

The Form-Completer:

This specialist of the Tutor/QA system takes the
incomplete semantic form and fills in values for the
variables until the form 1is completed. Each type of
semantic form has 1its own Form-Completer specialist. For
example, the semantic form:

(QPARTS—-IN-PART STATEMENT (BRANCH (ADDR XXX)))
requires that an address "XXX" of a branch in the NLS file
be found. (The English interpretation of this form is the
guestion, "WHAT STATEMENTS ARE IN BRANCH XXX?") A call |is
made to LISP-NLS to find a "good" branch, i.e. one that
exists and that has at least one substatement. Other forms
require calls to LISP-NLS to find good plexes, statement
contents, levels of statements, etc. to wuse to fill out

their semantic forms.

Some semantic forms require filling various cases. In
a OQFIND/INSTR semantic form (from "What command ‘verbs’ an
‘object ‘"), the cases Agent, Verb, and Object must be
filled. Since the gquestion is directed to the student, the
Agent case is filled automatically with "user". The Verb is
randomly chosen from a 1list of verbs 1like move, copy,
delete, print, etc. The selection of the Object 1is, of
course, dependent on the Verb. To find an appropriate
Object, the semantic network is queried. The chain of

inferences that must be drawn for the verb "move" is as

56

follows: The Instrument for the verb "move" 1is retrieved,
MOVE\COMMAND. Under MOVE\COMMAND is the Object on which it
works, STRUCTURE\UNIT. Since its part of speech 1is a CN
(concept noun) an example of it must be retrieved (XN). 1In
the entry for STRUCTURE\UNIT are examples, STATEMENT,
BRANCH, GROUP, and PLEX. The Object is chosen randomly from
among these four, say BRANCH. The semantic form 1is now
complete:
(QFIND/INSTR ((AGENT USER)

(VERB MOVE)

(OBJ BRANCH)))
One last check is made to make sure that this semantic form
has not been generated previously (to keep from asking the
same guestion more than once). With this completed semantic
form Tutor/QA simultaneously Proceeds with the work of the
De-Parser which derives the English surface representation
of the request to present to the student, ("WHAT COMMAND

MOVES A BRANCH?"), and the Evaluator which evaluates this

form to derive the correct answer.

The Answer Comparer:

For each kind of semantic form there 1is an Answer
Comparer specialist. At present, the semantic forms which
Tutor/QA handles are such that answers to them are simple
lists of items 1like "3A 3Al1 3A2" as opposed to entire
sentences (like the response to the question "How do vyou

delete statement 3Al1?" -- "I first type "delete" followed by

57

the word "statement", 3A1 and a carriage return. Then I
type another <carriage return after I see the OK: prompt.")
Obviously the latter response from the student would be much
more difficult to analyze, requiring a detailed parse and
interpretation of the meaning of all the sentences involved,
to say nothing of the detailed matching procedure that would
be needed to see if that meaning was equivalent to the

correct answer produced by the Evaluator.

Concerning ourselves with the former type of reply, the
Answer Comparer 1looks at the match of the two responses,
noting whether items are missing or extra in the student’s
reply. It then reports to the student appropriately and

reports back to Tutor/QA how the student performed.

Future Considerations

The shared representation in Student/QA and Tutor/QA
allows the addition of a very powerful mechanism, a history
list, one list containing all Tutor-generated reguests and
the other all Student-generated regquests, both in semantic

form representation.

The first thing that falls out of having this feature
is the ability in Student/QA mode to answer a student’s
procedural guestion and then to be able to respond to "DO
IT" by picking up the top-most semantic form of a procedure

request on the Student history 1list and executing 1it.

Although we now handle in a very limited way such "DO IT"
requests, we have always assumed that such requests refer to

performing the current task. Obviously this is inadequate.

Second, the history list feature provides us with the
ability in Tutor/QA mode to recognize a "cheating" guestion
by the student and to block it if we wish. For example, the
Tutor asks:

WHAT STATEMENTS ARE AT LEVEL 27
(a question produced from the semantic form

(QPARTS-IN-LEVEL (LEVEL 2))

Instead of responding, the student asks:

WHAT ARE THE STATEMENTS AT LEVEL 2?

This request is simply a paraphrase of the Tutor s question.
We recognize this by comparing the parse (semantic form) for
it with the form at the top of the Tutor’s history 1list.
(They will, of course, be the same.) We may then decide
either to answer the question or to refuse to answer
allowing him to ask other questions, but not one that parses

into the same form as the Tutor’s question.

The history list feature also gives the Tutor a simple
repository for the gquestions it has asked -- a place to
check on already-asked questions to keep from repeating

itself.

59

SECTION IV - TASK EVALUATION

Task evaluation is potentially one of the most fertile
areas of NLS Scholar, and at the same time is potentially
one of the most overwhelming, due to its <close connections
with the nebulous areas of searching the space of
discrepancies, learning from selected discrepancies,
emulating the tutor’'s example and even simulating (crudely)

a student’s probable misunderstanding.

At present, task evaluation is limited to a comparison
of the <correct file, which it generates from the correct
stored command sequence, with the student’'s file. It
reports to the student the scope of his error by printing on
his terminal the discrepant sections of his file and the
corresponding sections of the correct file. Some
sophistication is achieved by using "sensitive state" flaas
to 1limit the 1level of error description to terminology
consistent with the student’s current knowledge. In
addition, there are specialist-reporters for file structure
and content, CM position, viewspecs and printing which allow

for special description of errors in these areas.

Sensitive states

Sensitive state flags affect how an error is reported.
They are associated in the data base with each task. For

example, the tasks in Lesson 1 have the flag CMLEVELGAG

60

associated with them because the student has not been told
about branches and this prevents the CM specialist-reporter

from pointing out same-branch relationships.

Other 1implemented sensitive state flags behave as
follows. CMPLEXFLG enables the CM specialist-reporter to
point out simple same-plex relationships. VSDESCRIBEFLG
causes the viewspec specialist-reporter to talk about levels
and lines, rather than x's, b’s, etc. #RETRIES is really a
counter flag that provides a limit on the length of time one
can spend doing and redoing a task. The default is

initially set to 2 trials.

Specialist-reporters

Four specialist-reporters have been implemented
covering file structure and contents, CM position, viewspecs
and printing. Our design strateqy in each has been to
classify and describe the extensional discrepancies between
what was expected of the student and what the student
actually did. In each case, some suitable range of error
types and format for description was chosen to fit the
particular aspect of the error. An analysis of each
separate area yielded four independent formulae, with one
exception: a generalized list-comparison algorithm was found
to be avplicable to exploring any two lists for insertions,

omissions, and content errors, regardless of the form of

01

information ultimately to be extracted.

The specialist-reporter for file structure and content
verforms an analysis of the files into three cases: change
extraneous, change omitted, and change incorrect or faulty.
We have found it profitable to compare the student’s file
with the initial one, the target file with the initial, and
then to compare the comparisons. The information extracted
by this specialist is whichever section of the file is to be

printed in order to show just the discrepant parts.

In doing viewspecs evaluation, a more detailed
error-tyoing was vossible. It was possible to add
"overdone" and "underdone" classes (too much or too little
printed). This not only produced output that was more to
the point; it also permitted an appropriately selective task

continuation criterion.

Retrial vs. Repair

Often it is more instructive to fix one’s mistakes than
to try again; but up until now, we have leaned towards
retrial rather than repair. 1In general, this decision as to
whether to stick with the present mistake is a difficult
one. It 1involves having special knowledge about each
command and about how much background and understanding can

be presumed in the student.

02

Extensional vs. 1Intensional Information

In the present task evaluation system, only extensional
information 1is wused; that 1is, we look at the results of
executing a sequence of commands, i.e. the NLS file itself,
rather than 1looking directly at the seguence that produced
it. Although this approach has proved aquite effective,
there 1is much power to be gained from analyzing the
intensional information contained in the command sequence
itself. This analysis would use knowledge from the data
base to report to the student the conseaguence of an

incorrect command sequence.

For example, if the correct command sequence regquires
the word "plex" and the student types "branch", the command
sequence analyzer would report the error possibly wusing

information from the data base to construct an explanation

of the meaning of "branch" vs. "plex" and any other special
information it deemed wuseful to review. This type of
explanation provides a unique method of reviewing

information about the wuse of NLS at points in the lesson
where such review is obviously needed (at points where the
student errs). data base of the meaning of "branch" vs.

"plex".

SECTION V - SYSTEM ORGANIZATION

Overall Organization

The overall organization of NLS-SCHOLAR is represented
in Figure 6. There is a system executive which controls and
supervises the functioning of the four main modules of the
system (DELIVERY, STUDENT/QA, TUTOR/QA, TASK MONITOR). The
EXECUTIVE services these modules’ requests and provides
communication paths among them. When in tutorial mode (the
normal mode in NLS-SCHOLAR), the EXECUTIVE is driven by the
AGENDA which 1is a LISP representation of the Primer and is

produced automatically from the Primer ‘s content.

The DELIVERY module is very simple; it retrieves the
string the EXECUTIVE wants to print to the student and
orints it. If a cguestion is asked of the student by the
system, the ANSWER EVALUATOR 1is <called to judge the
correctness of the student’s answer. TUTOR/QA can also call
STUDENT/QA to allow the student to ask other questions

rather than immediately answering the question posed to him.

The TASK MONITOR is called either by EXECUTIVE when a
task must be set up for the student to perform, or by
STUDENT/QA, when an NLS command must be performed to use the

response in constructing an answer.

TASK MONITOR can perform commands in a number of

‘O4NI SJ3dS HIANHVN 34N1ONHLS ‘03S
G3LNIHd M3IA TOHLNOD 34 AONVANOD

SYSTEM ORGANIZATION

LN

S1SIMVID3dS |- uodaw.xmoglr] STIN-dSIT

1 ! !

O
140434 HOuu3 :
aNY Eomip JOV443LNI o
HOLVNTVAS MSVL @
T ‘ A -
Iy

MOLVN VA3

M3IMSNY

HOLINOW ¥/0 .

INOW e nanzs /0 40ILNL AY3AIN3Q

VAN3OV | ————{ 3AILNI3X3

different ways:

a) normally, by allowing the student to type on his
terminal as in standard NLS use.

b) 1invisibly, by passing commands to LISP-NLS without any
trace of their performance showing up in the student’s
terminal. The STUDENT/QA system often uses this mode
as does the TASK MONITOR.)

c) in tutorial mode, imitating what a human tutor would
do if he typed commands on the student’'s terminal.
This is done by surrounding with parentheses what
NLS-SCHOLAR "types" for the student.

The function that is responsible for all this, and the only

one that has access to LISP-NLS is called INTERFACE.

When used in mode (a), TASK MONITOR wuses CONTEXT
MONITOR to make a copy of the initial state of the NLS file,
and then puts the student in contact with LISP-NLS to allow
him to type in his commands. When the student has finished,
the state of his NLS file is saved for later use. Then TASK
MONITOR obtains a target file, i.e. a representation of
what the state of the NLS file would be if the student had
performed the task correctly. TASK MONITOR does this by
performing the correct command seguence for the task, which
is stored 1in the data base. These commands are performed
invisibly to the student, and they act on the copy of the
student’s file that was saved before. When this is done,

the state of the file (TARG), the initial state of the file

60

(INIT), and what the student obtained with his commands

(STU), are delivered to TASK EVALUATOR and ERROR REPORT.

Error Analysis

ERROR REPORT is responsible for analyzing the three
file (INIT, STU, and TARG), deciding if significant errors
have occurred, and if so, figuring out how to report these
errors to the student. To do that, a function named TASK
EVALUATOR is called. TASK EVALUATOR in turn <can call
several specialists to analyze the files and discover any
errors that the student may have made in terms of the
structure of the file, its content, the final vosition of
the control marker, the state of the viewspecs, and whether
or not he printed correctly whatever the task might have

required.

An error in structure is always crucial and must be
reported to the student. Therefore, an important function
of ERROR REPORT is to provide him with a description of the
error that 1s adequate for him to realize his mistake and
"debug" his task commands. For example, the structure
specialist operates by first checking if any differences
exist between the student’s file and the target file. If
this 1s the case, then an environment of the error that is
common to both files is determined. 1In order to frame the

environment of the error, some statements immediately

67

preceding this environment in the 1initial file, and some

statements following it, may be printed out to him.

Let us now clarify this description with an example.
Consider the ©protocol presented 1in Section I. EXECUTIVE
retrieves from the AGENDA its "instructions", which in this
case consists of delivering the text headed by "SUBSTITUTE
WORD IN STATEMENT", performing a task as if the tutor were
demonstrating how to do it, delivering some more text, and

finally giving the student a task to perform.

When NLS~SCHOLAR demonstrates to the student how to
perform a command, EXECUTIVE calls TASK MONITOR, hands it
the correct command seaquence for the task, and instructs it
to print out, wusing the parenthesis notation that we have
adopted to show the student what the "tutor" 1is actually
typing. TASK MONITOR then sets up the appropriate call to
INTERFACE, and LISP-NLS performs the commands. Since the
task in this case is guaranteed to be correct, there is no
need to let ERROR REPORT intervene, and TASK MONITOR returns
to the EXECUTIVE. After more text has been delivered, and
TASK 41 completed, the EXECUTIVE calls STUDENT/QA to handle

student guestions.

Consider, for example, the question the student asks:

What statement contains "CORN"?

63

Here, TASK MONITOR returns to the EXECUTIVE which then calls
STUDENT/QA. This question concerns the state of the NLS
file and cannot be answered with information stored in the
semantic network. Therefore, STUDENT/QA constructs a
command for LISP-NLS to execute and wuses the results in
constructing an answer. In our case, STUDENT/QA calls TASK
MONITOR and asks it to perform the commands JUMP @ and then
JUMP "CORN" and \ (back slash), which 1in NLS cause the
control marker to jump to the statement containing "CORN"
and print its address and content. The command is performed
invisibly and the response is returned to STUDENT/QA which
then extracts the address and constructs the answer. The
context manipulation machinery meanwhile took care of
protecting the student’s environment by providing a scratch

cooy of it on which these commands were performed.

At this point the EXECUTIVE again turns to the AGENDA
to find out what to do next. In this case, the AGENDA
reaquires delivering more text ("Use the Substitute command
to change statement 2Al..."). Let s see what happens when
the student performs this substitution task. TASK MONITOR
is called, and it orders INTERFACE to let the student talk
directly to LISP-NLS. After he types "Done", TASK MONITOR
saves the student’s environent and sets up the NLS file to

its initial state by calling CONTEXT MONITOR.

In this way, TASK MONITOR can now use the preferred

6:9

command segquence to find out what the NLS file should look
like if the task were performed correctly. TASK MONITOR
does that by performing invisibly (via the appropriate call
to INTERFACE) the preferred command sequence on the initial
file, thus obtaining the target file. With the student,
initial, and target files now obtained, TASK MONITOR calls
ERROR REPORT and TASK EVALUATOR. The structure specialist
detects a difference in branch 2A and returns to ERROR
REPORT, which figures out how to tell the student what
happened. ERROR REPORT does that by synthesizing a command
to print branch 2A of the target file, and this command is
performed, without echoes being shown, via a return to TASK
MONITOR and a call to INTERFACE. After that, control
returns to ERROR REPORT which synthesizes another print
command to describe what the student 4id instead, and the
same seqguence is repeated. ("But you changed this part of
it...") this time using the student’s file. After all this
is done, TASK MONITOR asks CONTEXT MONITOR to restore things
to their initial state and the student is requested to
perform the task again. The structure specialist detects a
difference in branch 2A and returns to ERROR REPORT, which
figures out how to tell the student what happened. ERROR
REPORT does that by synthesizing a command to print branch
2A of the target file, and this command 1is performed,
without echoes being shown, via a return to TASK MONITOR and

a call to INTERFACE. After that, control returns to ERROR

70

REPORT which synthesizes another print command to describe
what the student did instead, and the same seqguence 1is
repeated. ("But you changed this part of it...") this time
using the student’s file. After all this 1is done, TASK
MONITOR asks CONTEXT MONITOR to restore things to their
initial state and the student is requested to perform the

task again.

Student Aids

Several facilities have been developed to facilitate
the use of NLS-SCHOLAR in tutorial mode. The CONTROL module
allows the stdent to type *NLS* to the Question Answering
system at anvtime, and gain access to NLS for free play and
interaction, without disturbing the state of his file and
therefore not altering the progress of the lesson. The
student may type *RESTART* to restart performing a task,
with all the commands performed so far being forgotten. He
can type *QUIT* to aquit a lesson at anytime, without waiting
for the end of 1it; he may type *PROCEED* to continue it

again.

Debugging Aids

NLS-SCHOLAR contains a DRIBBLE facility to aid in the
debugging of the system. Whenever someone uses NLS-SCHOLAR,

a complete record of the transaction is kept on a protocol

71

file. Also, whenever a sensitive portion of the program
fails, a message (via SNDMSG) is sent to the person who
wrote that part of the program, and relevant information
about the failure is written in a special file 1in the
programmer s directory so that he may examine the problem

and correct it.

NLS-SCHOLAR can be run in human-backed mode, when
special arrangements have been made. This mode allows a
human expert watch (via linked terminals) the
student/computer dialog, and step in when the system fails.
For example, if the Question Answering system fails to
understand a question by the student, the human expert can

provide the answer by typing it in his own terminal.

SECTION VI - CONCLUSIONS AND RECOMMENDATIONS

The "finality" of the ©present report 1is only an
administrative technicality; much remains to be done before
NLS-SCHOLAR can be considered finished and ready to use as a
stand-alone Help and Tutorial facility. However, we have
made good progress towards that end, and we feel that even
now, in spite of the systems’s limitations, it could be
useful to its users. We believe that NLS-SCHOLAR offers
some very positive advantages that could make it worthwhile
to its users, even in its present, unfinished state: the
lessons are very nicely organized, and the systems’'s ability
to present examples, show how to do things, and propose
tasks which it then evaluates and comments upon, is very

power ful.

To ma<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>